A company has a source system that provides JSON records for various loT operations. The JSON Is loading directly into a persistent table with a variant field. The data Is quickly growing to 100s of millions of records and performance to becoming an issue. There is a generic access pattern that Is used to filter on the create_date key within the variant field.
What can be done to improve performance?
The correct answer is A because it improves the performance of queries by reducing the amount of data scanned and processed. By adding a create_date field with a timestamp data type, Snowflake can automatically cluster the table based on this field and prune the micro-partitions that do not match the filter condition. This avoids the need to parse the JSON data and access the variant field for every record.
Option B is incorrect because it does not improve the performance of queries. By adding a create_date field with a varchar data type, Snowflake cannot automatically cluster the table based on this field and prune the micro-partitions that do not match the filter condition. This still requires parsing the JSON data and accessing the variant field for every record.
Option C is incorrect because it does not address the root cause of the performance issue. By validating the size of the warehouse being used, Snowflake can adjust the compute resources to match the data volume and parallelize the query execution. However, this does not reduce the amount of data scanned and processed, which is the main bottleneck for queries on JSON data.
Option D is incorrect because it adds unnecessary complexity and overhead to the data loading and querying process. By incorporating the use of multiple tables partitioned by date ranges, Snowflake can reduce the amount of data scanned and processed for queries that specify a date range. However, this requires creating and maintaining multiple tables, loading data into the appropriate table based on the date, and joining the tables for queries that span multiple date ranges.Reference:
A user, analyst_user has been granted the analyst_role, and is deploying a SnowSQL script to run as a background service to extract data from Snowflake.
What steps should be taken to allow the IP addresses to be accessed? (Select TWO).
To ensure that an analyst_user can only access Snowflake from specific IP addresses, the following steps are required:
Option B: This alters the network policy directly linked to analyst_user. Setting a network policy on the user level is effective and ensures that the specified network restrictions apply directly and exclusively to this user.
Option D: Before a network policy can be set or altered, the appropriate role with permission to manage network policies must be used. SECURITYADMIN is typically the role that has privileges to create and manage network policies in Snowflake. Creating a network policy that specifies allowed IP addresses ensures that only requests coming from those IPs can access Snowflake under this policy. After creation, this policy can be linked to specific users or roles as needed.
Options A and E mention altering roles or using the wrong role (USERADMIN typically does not manage network security settings), and option C incorrectly attempts to set a network policy directly as an IP address, which is not syntactically or functionally valid. Reference: Snowflake's security management documentation covering network policies and role-based access controls.
A company has a source system that provides JSON records for various loT operations. The JSON Is loading directly into a persistent table with a variant field. The data Is quickly growing to 100s of millions of records and performance to becoming an issue. There is a generic access pattern that Is used to filter on the create_date key within the variant field.
What can be done to improve performance?
The correct answer is A because it improves the performance of queries by reducing the amount of data scanned and processed. By adding a create_date field with a timestamp data type, Snowflake can automatically cluster the table based on this field and prune the micro-partitions that do not match the filter condition. This avoids the need to parse the JSON data and access the variant field for every record.
Option B is incorrect because it does not improve the performance of queries. By adding a create_date field with a varchar data type, Snowflake cannot automatically cluster the table based on this field and prune the micro-partitions that do not match the filter condition. This still requires parsing the JSON data and accessing the variant field for every record.
Option C is incorrect because it does not address the root cause of the performance issue. By validating the size of the warehouse being used, Snowflake can adjust the compute resources to match the data volume and parallelize the query execution. However, this does not reduce the amount of data scanned and processed, which is the main bottleneck for queries on JSON data.
Option D is incorrect because it adds unnecessary complexity and overhead to the data loading and querying process. By incorporating the use of multiple tables partitioned by date ranges, Snowflake can reduce the amount of data scanned and processed for queries that specify a date range. However, this requires creating and maintaining multiple tables, loading data into the appropriate table based on the date, and joining the tables for queries that span multiple date ranges.Reference:
When loading data into a table that captures the load time in a column with a default value of either CURRENT_TIME () or CURRENT_TIMESTAMP () what will occur?
When using the COPY command to load data into Snowflake, if a column has a default value set to CURRENT_TIME() or CURRENT_TIMESTAMP(), all rows loaded by that specific COPY command will have the same timestamp. This is because the default value for the timestamp is evaluated at the start of the COPY operation, and that same value is applied to all rows loaded by that operation.
In a managed access schema, what are characteristics of the roles that can manage object privileges? (Select TWO).
In a managed access schema, the privilege management is centralized with the schema owner, who has the authority to grant object privileges within the schema. Additionally, the SECURITYADMIN role has the capability to manage object grants globally, which includes within managed access schemas. Other roles, such as SYSADMIN or database owners, do not inherently have this privilege unless explicitly granted.
Elliott
10 days agoZana
14 days agoRolande
24 days agoJohnetta
26 days agoJolanda
29 days agoPatrick
1 months agoNoble
1 months agoWade
2 months agoHollis
2 months agoArminda
2 months agoLayla
2 months agoMable
2 months agoRozella
3 months agoThaddeus
3 months agoOlive
4 months agoGianna
4 months agoGerman
5 months agoJaclyn
5 months agoDorathy
5 months agoBelen
5 months agoLindsey
5 months agoRickie
5 months agoGennie
6 months agoStephania
7 months ago