You have an Azure Stream Analytics query. The query returns a result set that contains 10,000 distinct values for a column named clusterID.
You monitor the Stream Analytics job and discover high latency.
You need to reduce the latency.
Which two actions should you perform? Each correct answer presents a complete solution.
NOTE: Each correct selection is worth one point.
C: Scaling a Stream Analytics job takes advantage of partitions in the input or output. Partitioning lets you
divide data into subsets based on a partition key. A process that consumes the data (such as a Streaming
Analytics job) can consume and write different partitions in parallel, which increases throughput.
E: Streaming Units (SUs) represents the computing resources that are allocated to execute a Stream Analytics
job. The higher the number of SUs, the more CPU and memory resources are allocated for your job. This
capacity lets you focus on the query logic and abstracts the need to manage the hardware to run your Stream
Analytics job in a timely manner.
References:
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-parallelization
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-streaming-unit-consumption
Currently there are no comments in this discussion, be the first to comment!