A wildlife conservation group would like to use a neural network to classify images of different animals. The algorithm is going to be used on a social media platform to automatically pick out pictures of the chosen animal of the month. This month's animal is set to be a wolf. The test team has already observed that the algorithm could classify a picture of a dog as being a wolf because of the similar characteristics between dogs and wolves. To handle such instances, the team is planning to train the model with additional images of wolves and dogs so that the model is able to better differentiate between the two.
What test method should you use to verify that the model has improved after the additional training?
Back-to-back testing is used to compare two different versions of an ML model, which is precisely what is needed in this scenario.
The model initially misclassified dogs as wolves due to feature similarities.
The test team retrains the model with additional images of dogs and wolves.
The best way to verify whether this additional training improved classification accuracy is to compare the original model's output with the newly trained model's output using the same test dataset.
Why Other Options Are Incorrect:
A (Metamorphic Testing): Metamorphic testing is useful for generating new test cases based on existing ones but does not directly compare different model versions.
B (Adversarial Testing): Adversarial testing is used to check how robust a model is against maliciously perturbed inputs, not to verify training effectiveness.
C (Pairwise Testing): Pairwise testing is a combinatorial technique for reducing the number of test cases by focusing on key variable interactions, not for validating model improvements.
Supporting Reference from ISTQB Certified Tester AI Testing Study Guide:
ISTQB CT-AI Syllabus (Section 9.3: Back-to-Back Testing)
'Back-to-back testing is used when an updated ML model needs to be compared against a previous version to confirm that it performs better or as expected'.
'The results of the newly trained model are compared with those of the prior version to ensure that changes did not negatively impact performance'.
Conclusion:
To verify that the model's performance improved after retraining, back-to-back testing is the most appropriate method as it compares both model versions. Hence, the correct answer is D.
Which of the following is an example of a clustering problem that can be resolved by unsupervised learning?
Clustering is a form of unsupervised learning, which groups data points based on similarities without predefined labels. According to ISTQB CT-AI Syllabus, clustering is used in scenarios where:
The objective is to find natural groupings in data.
The dataset does not have labeled outputs.
Patterns and structures need to be identified automatically.
Analyzing the answer choices:
A . Associating shoppers with their shopping tendencies Correct
Shoppers can be grouped based on purchasing behaviors (e.g., luxury shoppers vs. budget-conscious shoppers), which is a typical clustering application in market segmentation.
B . Grouping individual fish together based on their types of fins Incorrect
If the types of fins are labeled, it becomes a classification problem, which requires supervised learning.
C . Classifying muffin purchases based on packaging attractiveness Incorrect
Classification, not clustering, because attractiveness scores or labels must be predefined.
D . Estimating the expected purchase of cat food after an ad campaign Incorrect
This is a prediction task, best suited for regression models, which are part of supervised learning.
Thus, Option A is the best answer, as clustering is used to group shoppers based on tendencies without predefined labels.
Certified Tester AI Testing Study Guide Reference:
ISTQB CT-AI Syllabus v1.0, Section 3.1.2 (Unsupervised Learning - Clustering and Association)
ISTQB CT-AI Syllabus v1.0, Section 3.3 (Selecting a Form of ML - Clustering).
Pairwise testing can be used in the context of self-driving cars for controlling an explosion in the number of combinations of parameters.
Which ONE of the following options is LEAST likely to be a reason for this incredible growth of parameters?
SELECT ONE OPTION
Pairwise testing is used to handle the large number of combinations of parameters that can arise in complex systems like self-driving cars. The question asks which of the given options is least likely to be a reason for the explosion in the number of parameters.
Different Road Types (A): Self-driving cars must operate on various road types, such as highways, city streets, rural roads, etc. Each road type can have different characteristics, requiring the car's system to adapt and handle different scenarios. Thus, this is a significant factor contributing to the growth of parameters.
Different Weather Conditions (B): Weather conditions such as rain, snow, fog, and bright sunlight significantly affect the performance of self-driving cars. The car's sensors and algorithms must adapt to these varying conditions, which adds to the number of parameters that need to be considered.
ML Model Metrics to Evaluate Functional Performance (C): While evaluating machine learning (ML) model performance is crucial, it does not directly contribute to the explosion of parameter combinations in the same way that road types, weather conditions, and car features do. Metrics are used to measure and assess performance but are not themselves variable conditions that the system must handle.
Different Features like ADAS, Lane Change Assistance, etc. (D): Advanced Driver Assistance Systems (ADAS) and other features add complexity to self-driving cars. Each feature can have multiple settings and operational modes, contributing to the overall number of parameters.
Hence, the least likely reason for the incredible growth in the number of parameters is C. ML model metrics to evaluate the functional performance.
ISTQB CT-AI Syllabus Section 9.2 on Pairwise Testing discusses the application of this technique to manage the combinations of different variables in AI-based systems, including those used in self-driving cars.
Sample Exam Questions document, Question #29 provides context for the explosion in parameter combinations in self-driving cars and highlights the use of pairwise testing as a method to manage this complexity.
Written requirements are given in text documents, which ONE of the following options is the BEST way to generate test cases from these requirements?
SELECT ONE OPTION
When written requirements are given in text documents, the best way to generate test cases is by using Natural Language Processing (NLP). Here's why:
Natural Language Processing (NLP): NLP can analyze and understand human language. It can be used to process textual requirements to extract relevant information and generate test cases. This method is efficient in handling large volumes of textual data and identifying key elements necessary for testing.
Why Not Other Options:
Analyzing source code for generating test cases: This is more suitable for white-box testing where the code is available, but it doesn't apply to text-based requirements.
Machine learning on logs of execution: This approach is used for dynamic analysis based on system behavior during execution rather than static textual requirements.
GUI analysis by computer vision: This is used for testing graphical user interfaces and is not applicable to text-based requirements.
Pairwise testing can be used in the context of self-driving cars for controlling an explosion in the number of combinations of parameters.
Which ONE of the following options is LEAST likely to be a reason for this incredible growth of parameters?
SELECT ONE OPTION
Pairwise testing is used to handle the large number of combinations of parameters that can arise in complex systems like self-driving cars. The question asks which of the given options is least likely to be a reason for the explosion in the number of parameters.
Different Road Types (A): Self-driving cars must operate on various road types, such as highways, city streets, rural roads, etc. Each road type can have different characteristics, requiring the car's system to adapt and handle different scenarios. Thus, this is a significant factor contributing to the growth of parameters.
Different Weather Conditions (B): Weather conditions such as rain, snow, fog, and bright sunlight significantly affect the performance of self-driving cars. The car's sensors and algorithms must adapt to these varying conditions, which adds to the number of parameters that need to be considered.
ML Model Metrics to Evaluate Functional Performance (C): While evaluating machine learning (ML) model performance is crucial, it does not directly contribute to the explosion of parameter combinations in the same way that road types, weather conditions, and car features do. Metrics are used to measure and assess performance but are not themselves variable conditions that the system must handle.
Different Features like ADAS, Lane Change Assistance, etc. (D): Advanced Driver Assistance Systems (ADAS) and other features add complexity to self-driving cars. Each feature can have multiple settings and operational modes, contributing to the overall number of parameters.
Hence, the least likely reason for the incredible growth in the number of parameters is C. ML model metrics to evaluate the functional performance.
ISTQB CT-AI Syllabus Section 9.2 on Pairwise Testing discusses the application of this technique to manage the combinations of different variables in AI-based systems, including those used in self-driving cars.
Sample Exam Questions document, Question #29 provides context for the explosion in parameter combinations in self-driving cars and highlights the use of pairwise testing as a method to manage this complexity.
Rikki
6 days agoMila
8 days agoEzekiel
19 days agoKattie
1 months agoLawrence
1 months agoEdelmira
2 months agoTimothy
2 months agoChantay
2 months agoMartina
3 months agoHelene
3 months agoDevon
3 months agoMerilyn
4 months agoMargarita
4 months agoMarvel
4 months agoAn
5 months agoJerry
5 months agoTemeka
5 months agoLatrice
5 months agoNguyet
5 months agoCatarina
6 months agoLai
6 months agoLashaunda
6 months agoGail
6 months agoCheryl
6 months agoSharita
7 months agoLynette
7 months agoJaney
7 months agoCeleste
7 months agoSantos
8 months agoEdmond
9 months agoMariko
9 months agoRachael
10 months agoBernadine
10 months agoDallas
10 months agoShanda
10 months agoVallie
11 months ago