You work for an organization that operates a streaming music service. You have a custom production model that is serving a "next song" recommendation based on a user's recent listening history. Your model is deployed on a Vertex Al endpoint. You recently retrained the same model by using fresh dat
a. The model received positive test results offline. You now want to test the new model in production while minimizing complexity. What should you do?
Traffic splitting is a feature of Vertex AI that allows you to distribute the prediction requests among multiple models or model versions within the same endpoint. You can specify the percentage of traffic that each model or model version receives, and change it at any time. Traffic splitting can help you test the new model in production without creating a new endpoint or a separate service. You can deploy the new model to the existing Vertex AI endpoint, and use traffic splitting to send 5% of production traffic to the new model. You can monitor the end-user metrics, such as listening time, to compare the performance of the new model and the previous model. If the end-user metrics improve between models over time, you can gradually increase the percentage of production traffic sent to the new model. This solution can help you test the new model in production while minimizing complexity and cost.Reference:
Deploying models to endpoints | Vertex AI
You trained a model on data stored in a Cloud Storage bucket. The model needs to be retrained frequently in Vertex AI Training using the latest data in the bucket. Data preprocessing is required prior to retraining. You want to build a simple and efficient near-real-time ML pipeline in Vertex AI that will preprocess the data when new data arrives in the bucket. What should you do?
Cloud Run can be triggered on new data arrivals, which makes it ideal for near-real-time processing. The function then initiates the Vertex AI Pipeline for preprocessing and storing features in Vertex AI Feature Store, aligning with the retraining needs. Cloud Scheduler (Option A) is suitable for scheduled jobs, not event-driven triggers. Dataflow (Option C) is better suited for batch processing or ETL rather than ML preprocessing pipelines.
You are creating a social media app where pet owners can post images of their pets. You have one million user uploaded images with hashtags. You want to build a comprehensive system that recommends images to users that are similar in appearance to their own uploaded images.
What should you do?
The best option to build a comprehensive system that recommends images to users that are similar in appearance to their own uploaded images is to download a pretrained convolutional neural network (CNN), and use the model to generate embeddings of the input images. Embeddings are low-dimensional representations of high-dimensional data that capture the essential features and semantics of the data. By using a pretrained CNN, you can leverage the knowledge learned from large-scale image datasets, such as ImageNet, and apply it to your own domain. A pretrained CNN can be used as a feature extractor, where the output of the last hidden layer (or any intermediate layer) is taken as the embedding vector for the input image. You can then measure the similarity between embeddings using a distance metric, such as cosine similarity or Euclidean distance, and recommend images that have the highest similarity scores to the user's uploaded image. Option A is incorrect because downloading a pretrained CNN and fine-tuning the model to predict hashtags based on the input images may not capture the visual similarity of the images, as hashtags may not reflect the appearance of the images accurately. For example, two images of different breeds of dogs may have the same hashtag #dog, but they may not look similar to each other. Moreover, fine-tuning the model may require additional data and computational resources, and it may not generalize well to new images that have different or missing hashtags. Option B is incorrect because retrieving image labels and dominant colors from the input images using the Vision API may not capture the visual similarity of the images, as labels and colors may not reflect the fine-grained details of the images. For example, two images of the same breed of dog may have different labels and colors depending on the background, lighting, and angle of the image. Moreover, using the Vision API may incur additional costs and latency, and it may not be able to handle custom or domain-specific labels. Option C is incorrect because using the provided hashtags to create a collaborative filtering algorithm may not capture the visual similarity of the images, as collaborative filtering relies on the ratings or preferences of users, not the features of the images. For example, two images of different animals may have similar ratings or preferences from users, but they may not look similar to each other. Moreover, collaborative filtering may suffer from the cold start problem, where new images or users that have no ratings or preferences cannot be recommended.Reference:
Image similarity search with TensorFlow
Image embeddings documentation
Pretrained models documentation
Similarity metrics documentation
You are implementing a batch inference ML pipeline in Google Cloud. The model was developed by using TensorFlow and is stored in SavedModel format in Cloud Storage. You need to apply the model to a historical dataset that is stored in a BigQuery table. You want to perform inference with minimal effort. What should you do?
Vertex AI batch prediction is the most appropriate and efficient way to apply a pre-trained model like TensorFlow's SavedModel to a large dataset, especially for batch processing.
The Vertex AI batch prediction job works by exporting your dataset (in this case, historical data from BigQuery) to a suitable format (like Avro or CSV) and then processing it in Cloud Storage where the model is stored.
Avro format is recommended for large datasets as it is highly efficient for data storage and is optimized for read/write operations in Google Cloud, which is why option B is correct.
Option A suggests using BigQuery ML for inference, but it does not support running arbitrary TensorFlow models directly within BigQuery ML. Hence, BigQuery ML is not a valid option for this particular task.
Option C (exporting to CSV) is a valid alternative but is less efficient compared to Avro in terms of performance.
You work at an organization that maintains a cloud-based communication platform that integrates conventional chat, voice, and video conferencing into one platform. The audio recordings are stored in Cloud Storage. All recordings have an 8 kHz sample rate and are more than one minute long. You need to implement a new feature in the platform that will automatically transcribe voice call recordings into a text for future applications, such as call summarization and sentiment analysis. How should you implement the voice call transcription feature following Google-recommended best practices?
Kenneth
Daniel
16 days agoCasie
18 days agoGladys
29 days agoRessie
1 months agoRonnie
2 months agoClemencia
2 months agoMarta
2 months agoPenney
2 months agoTeddy
3 months agoStanford
3 months agoAngelyn
3 months agoJonell
4 months agoNickie
4 months agoNoe
4 months agoBlondell
4 months agoMurray
4 months agoChaya
5 months agoDorathy
5 months agoLenora
5 months agoCarey
5 months agoSage
5 months agoLura
6 months agoTheola
6 months agoSalina
6 months agoTheresia
6 months agoGeorgene
6 months agoBeth
7 months agoMargart
7 months agoThaddeus
7 months agoElfrieda
8 months agoJesse
9 months agoCaprice
9 months agoXochitl
9 months agopetal
1 years ago