What is the primary purpose of fine-tuning in the lifecycle of a Large Language Model (LLM)?
Definition of Fine-Tuning: Fine-tuning is a process in which a pretrained model is further trained on a smaller, task-specific dataset. This helps the model adapt to particular tasks or domains, improving its performance in those areas.
Purpose: The primary purpose is to refine the model's parameters so that it performs optimally on the specific content it will encounter in real-world applications. This makes the model more accurate and efficient for the given task.
Example: For instance, a general language model can be fine-tuned on legal documents to create a specialized model for legal text analysis, improving its ability to understand and generate text in that specific context.
Currently there are no comments in this discussion, be the first to comment!