Which of the following code blocks returns the number of unique values in column storeId of DataFrame transactionsDf?
transactionsDf.select('storeId').dropDuplicates().count()
Correct! After dropping all duplicates from column storeId, the remaining rows get counted, representing the number of unique values in the column.
transactionsDf.select(count('storeId')).dropDuplicates()
No. transactionsDf.select(count('storeId')) just returns a single-row DataFrame showing the number of non-null rows. dropDuplicates() does not have any effect in this context.
transactionsDf.dropDuplicates().agg(count('storeId'))
Incorrect. While transactionsDf.dropDuplicates() removes duplicate rows from transactionsDf, it does not do so taking only column storeId into consideration, but eliminates full row duplicates
instead.
transactionsDf.distinct().select('storeId').count()
Wrong. transactionsDf.distinct() identifies unique rows across all columns, but not only unique rows with respect to column storeId. This may leave duplicate values in the column, making the count
not represent the number of unique values in that column.
transactionsDf.select(distinct('storeId')).count()
False. There is no distinct method in pyspark.sql.functions.
Lashunda
1 months agoCrissy
9 days agoArleen
2 months agoSilva
2 months agoTonja
12 days agoLinette
14 days agoCatarina
27 days agoGracia
29 days agoChauncey
2 months agoCordelia
2 months agoZack
2 months agoTaryn
29 days agoTaryn
1 months agoTaryn
1 months agoCiara
2 months agoLaurena
1 months agoHermila
1 months agoAnnett
1 months ago