The code block shown below should return a DataFrame with columns transactionsId, predError, value, and f from DataFrame transactionsDf. Choose the answer that correctly fills the blanks in the
code block to accomplish this.
transactionsDf.__1__(__2__)
transactionsDf.select('storeId').dropDuplicates().count()
Correct! After dropping all duplicates from column storeId, the remaining rows get counted, representing the number of unique values in the column.
transactionsDf.select(count('storeId')).dropDuplicates()
No. transactionsDf.select(count('storeId')) just returns a single-row DataFrame showing the number of non-null rows. dropDuplicates() does not have any effect in this context.
transactionsDf.dropDuplicates().agg(count('storeId'))
Incorrect. While transactionsDf.dropDuplicates() removes duplicate rows from transactionsDf, it does not do so taking only column storeId into consideration, but eliminates full row duplicates
instead.
transactionsDf.distinct().select('storeId').count()
Wrong. transactionsDf.distinct() identifies unique rows across all columns, but not only unique rows with respect to column storeId. This may leave duplicate values in the column, making the count
not represent the number of unique values in that column.
transactionsDf.select(distinct('storeId')).count()
False. There is no distinct method in pyspark.sql.functions.
Lezlie
1 months agoDorothy
2 months agoFrederica
2 months agoJacquelyne
2 months agoArleen
20 days agoJaime
1 months agoFairy
2 months agoJules
18 days agoLindsey
24 days agoNada
26 days agoShawna
1 months agoLemuel
3 months agoCharolette
3 months agoLemuel
3 months ago