Choosing unreliable sources for data, which can cause data quality issues, is a result of:
Choosing unreliable sources for data can lead to significant data quality issues. This problem is often a symptom of underlying issues in data management practices.
Too Much Data:
While having excessive data can create challenges, it is not directly related to the reliability of data sources.
Immature Data Architecture:
An immature data architecture can contribute to various data issues, but it specifically relates to the overall design and infrastructure rather than the selection of data sources.
Weak Master Data Management (MDM):
MDM is crucial for ensuring data quality and consistency. Weak MDM practices can lead to poor data governance, lack of standardization, and the use of unreliable data sources.
Effective MDM involves establishing strong governance policies, data stewardship, and validation processes to ensure data is sourced from reliable and authoritative sources.
Too Little Data:
Insufficient data can be problematic but is not directly related to choosing unreliable data sources.
No Chance Controls:
This option is not a standard term in data management and does not directly address the issue of data source reliability.
DAMA-DMBOK (Data Management Body of Knowledge) Framework
CDMP (Certified Data Management Professional) Exam Study Materials
Maryanne
11 days agoErnie
13 days agoMarti
14 days agoAlecia
19 days agoLauran
23 days agoThad
24 days agoFrance
12 days agoPage
15 days agoBarbra
28 days agoTimothy
5 days agoJanae
6 days agoTaryn
1 months ago