BlackFriday 2024! Hurry Up, Grab the Special Discount - Save 25% - Ends In 00:00:00 Coupon code: SAVE25
Welcome to Pass4Success

- Free Preparation Discussions

APMG-International Exam Artificial-Intelligence-Foundation Topic 2 Question 4 Discussion

Actual exam question for APMG-International's Artificial-Intelligence-Foundation exam
Question #: 4
Topic #: 2
[All Artificial-Intelligence-Foundation Questions]

What technique can be adopted when a weak learners hypothesis accuracy is only slightly better than 50%?

Show Suggested Answer Hide Answer
Suggested Answer: D

Weak Learner: Colloquially, a model that performs slightly better than a naive model.

More formally, the notion has been generalized to multi-class classification and has a different meaning beyond better than 50 percent accuracy.

For binary classification, it is well known that the exact requirement for weak learners is to be better than random guess. [...] Notice that requiring base learners to be better than random guess is too weak for multi-class problems, yet requiring better than 50% accuracy is too stringent.

--- Page 46,Ensemble Methods, 2012.

It is based on formal computational learning theory that proposes a class of learning methods that possess weakly learnability, meaning that they perform better than random guessing. Weak learnability is proposed as a simplification of the more desirable strong learnability, where a learnable achieved arbitrary good classification accuracy.

A weaker model of learnability, called weak learnability, drops the requirement that the learner be able to achieve arbitrarily high accuracy; a weak learning algorithm needs only output an hypothesis that performs slightly better (by an inverse polynomial) than random guessing.

---The Strength of Weak Learnability, 1990.

It is a useful concept as it is often used to describe the capabilities of contributing members of ensemble learning algorithms. For example, sometimes members of a bootstrap aggregation are referred to as weak learners as opposed to strong, at least in the colloquial meaning of the term.

More specifically, weak learners are the basis for the boosting class of ensemble learning algorithms.

The term boosting refers to a family of algorithms that are able to convert weak learners to strong learners.

https://machinelearningmastery.com/strong-learners-vs-weak-learners-for-ensemble-learning/

The best technique to adopt when a weak learner's hypothesis accuracy is only slightly better than 50% is boosting. Boosting is an ensemble learning technique that combines multiple weak learners (i.e., models with a low accuracy) to create a more powerful model. Boosting works by iteratively learning a series of weak learners, each of which is slightly better than random guessing. The output of each weak learner is then combined to form a more accurate model. Boosting is a powerful technique that has been proven to improve the accuracy of a wide range of machine learning tasks. For more information, please see the BCS Foundation Certificate In Artificial Intelligence Study Guide or the resources listed above.


Contribute your Thoughts:

Leila
4 months ago
Iteration? Sounds like a hamster on a wheel. Gotta go with D) Boosting to get that learner up to speed.
upvoted 0 times
Ashlee
3 months ago
I agree, boosting is the best choice here.
upvoted 0 times
...
Reuben
3 months ago
Yeah, boosting can really improve accuracy.
upvoted 0 times
...
Vivan
3 months ago
Boosting is the way to go for sure.
upvoted 0 times
...
Alayna
3 months ago
Iteration might feel like a hamster wheel, but boosting is the key to success.
upvoted 0 times
...
Lettie
3 months ago
I agree, boosting can really help a weak learner.
upvoted 0 times
...
Marguerita
3 months ago
Yeah, boosting is definitely the technique to use when accuracy is just slightly better than 50%.
upvoted 0 times
...
Ronna
4 months ago
Boosting is the way to go, it helps improve accuracy.
upvoted 0 times
...
Bea
4 months ago
Boosting is the way to go, it'll help improve that weak learner.
upvoted 0 times
...
...
Shalon
4 months ago
Over-fitting, really? That's like trying to squeeze into a pair of pants that's two sizes too small. D) Boosting is the answer, no doubt.
upvoted 0 times
Christiane
4 months ago
D) Boosting is the answer, no doubt.
upvoted 0 times
...
Armanda
4 months ago
Over-fitting, really? That's like trying to squeeze into a pair of pants that's two sizes too small.
upvoted 0 times
...
...
Portia
4 months ago
I believe Boosting is the best option because it focuses on improving the performance of weak learners.
upvoted 0 times
...
Twana
4 months ago
I'm not sure, but I think over-fitting might also be a potential technique in this scenario.
upvoted 0 times
...
Keneth
5 months ago
Activation? What is this, a superhero movie? Definitely D) Boosting for me.
upvoted 0 times
Vivan
4 months ago
I agree, Boosting can help improve the performance of weak learners.
upvoted 0 times
...
Malcom
4 months ago
Boosting is a good choice when accuracy is slightly better than 50%.
upvoted 0 times
...
...
Tammy
5 months ago
I agree with Marylyn, Boosting can be used to improve the accuracy of weak learners.
upvoted 0 times
...
Shawnda
5 months ago
Hmm, looks like we need to boost that weak learner's performance. D) Boosting seems like the way to go!
upvoted 0 times
Leonardo
4 months ago
Boosting is definitely the technique to use in this situation.
upvoted 0 times
...
Karan
4 months ago
I agree, boosting can help improve the accuracy of the weak learner.
upvoted 0 times
...
...
Marylyn
5 months ago
I think the answer is D) Boosting.
upvoted 0 times
...

Save Cancel