A machine learning (ML) specialist needs to extract embedding vectors from a text series. The goal is to provide a ready-to-ingest feature space for a data scientist to develop downstream ML predictive models. The text consists of curated sentences in English. Many sentences use similar words but in different contexts. There are questions and answers among the sentences, and the embedding space must differentiate between them.
Which options can produce the required embedding vectors that capture word context and sequential QA information? (Choose two.)
Currently there are no comments in this discussion, be the first to comment!